Exact Inference on Gaussian Graphical Models of Arbitrary Topology using Path-Sums

نویسندگان

  • Pierre-Louis Giscard
  • Z. Choo
  • S. J. Thwaite
  • D. Jaksch
چکیده

We present the path-sum formulation for exact statistical inference of marginals on Gaussian graphical models of arbitrary topology. The path-sum formulation gives the covariance between each pair of variables as a branched continued fraction of finite depth and breadth. Our method originates from the closed-form resummation of infinite families of terms of the walk-sum representation of the covariance matrix. We prove that the path-sum formulation always exists for models whose covariance matrix is positive definite: i.e. it is valid for both walk-summable and non-walk-summable graphical models of arbitrary topology. We show that for graphical models on trees the path-sum formulation is equivalent to Gaussian belief propagation. We also recover, as a corollary, an existing result that uses determinants to calculate the covariance matrix. We show that the path-sum formulation formulation is valid for arbitrary partitions of the inverse covariance matrix. We give detailed examples demonstrating our results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate inference in Gaussian graphical models

The focus of this thesis is approximate inference in Gaussian graphical models. A graphical model is a family of probability distributions in which the structure of interactions among the random variables is captured by a graph. Graphical models have become a powerful tool to describe complex high-dimensional systems specified through local interactions. While such models are extremely rich and...

متن کامل

An empirical Bayes approach to inferring large-scale gene association networks

MOTIVATION Genetic networks are often described statistically using graphical models (e.g. Bayesian networks). However, inferring the network structure offers a serious challenge in microarray analysis where the sample size is small compared to the number of considered genes. This renders many standard algorithms for graphical models inapplicable, and inferring genetic networks an 'ill-posed' i...

متن کامل

Exact inference and learning for cumulative distribution functions on loopy graphs

Abstract Many problem domains including climatology and epidemiology require models that can capture both heavy-tailed statistics and local dependencies. Specifying such distributions using graphical models for probability density functions (PDFs) generally lead to intractable inference and learning. Cumulative distribution networks (CDNs) provide a means to tractably specify multivariate heavy...

متن کامل

Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology

Graphical models, such as Bayesian networks and Markov random elds represent statistical dependencies of variables by a graph. Local \belief propagation" rules of the sort proposed by Pearl [20] are guaranteed to converge to the correct posterior probabilities in singly connected graphs. Recently good performance has been obtained by using these same rules on graphs with loops, a method known a...

متن کامل

Gaussian Approximation of Collective Graphical Models

The Collective Graphical Model (CGM) models a population of independent and identically distributed individuals when only collective statistics (i.e., counts of individuals) are observed. Exact inference in CGMs is intractable, and previous work has explored Markov Chain Monte Carlo (MCMC) and MAP approximations for learning and inference. This paper studies Gaussian approximations to the CGM. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016